Evaluating the Protectiveness of a Bioavailability‐Based Environmental Quality Standard for the Protection of Aquatic Communities from Zinc Toxicity Based on Field Evidence

Author:

Peters Adam1ORCID,Wilson Iain1,Cooper Christopher A.2,Ryan Adam3,Van Assche Frank2,Winbow Howard2

Affiliation:

1. WCA Environment Faringdon United Kingdom

2. International Zinc Association Brussels Belgium

3. International Zinc Association Durham North Carolina USA

Abstract

AbstractEnvironmental quality standards (EQS) are typically derived from the results of laboratory studies on single species. There is always uncertainty surrounding the protectiveness of an EQS when applied to real ecosystems containing a multitude of chemical and physical stressors. Quantile regression was used with field biological data on invertebrates in United Kingdom waters to identify taxa that are responsive to bioavailable zinc exposures. A threshold based on the total abundance of eight responsive taxa is used as an indicator of the overall ecosystem sensitivity. The inclusion of some responsive but insensitive taxa in this ecological metric could bias the results toward a higher threshold. The least responsive species were progressively removed from the collective ecological metric, basing the analysis on a progressively smaller number of the more responsive species. Quantile regression analysis at the 95th quantile for the three most responsive taxa resulted in a 10% effect concentration of 14.8 µg L−1 bioavailable zinc, suggesting that the EQS of 10.9 µg L−1 bioavailable zinc is sufficiently protective of sensitive members of the invertebrate community. There is a compromise between the robustness of the analysis and the sensitivity of the subcommunity that it is based on. Analyses based on fewer taxa provide a more sensitive result. This approach assessed real ecosystem data and evaluated the uncertainty associated with the protectiveness of the EQS for zinc. The zinc EQS is sufficiently protective of sensitive members of benthic macroinvertebrate communities under real environmental conditions, including a mix of multiple substances. Environ Toxicol Chem 2023;42:1010–1021. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3