Enhanced thermal conductivity in boron nitride incorporated polyethylene/polymethyl methacrylate composites via double percolation structure

Author:

You Feng1ORCID,Ke Xue1,Tang Gan1,Yan Xiaolong1,Chen Ruiqi2,Jiang Xueliang1ORCID,Yao Chu1ORCID

Affiliation:

1. Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering Wuhan Institute of Technology Wuhan China

2. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Kowloon Hong Kong

Abstract

AbstractDue to the miniaturization, integration and multi‐functional development of contemporary electronic devices, there is a growing need for efficient thermal conductive composite materials. This study focuses on enhancing the dispersion of modified boron nitride (mBN) within a linear low‐density polyethylene (LLDPE) phase by incorporating LLDPE‐graft‐Aminomethylpyridine (LLDPE‐g‐Py) to non‐covalently modify BN. Additionally, polymethyl methacrylate (PMMA) and LLDPE polymers were introduced to create modified BN/LLDPE/PMMA (mBN/LLDPE/PMMA) composites with a double percolation structure. The co‐continuous structure of the polymer composites was observed by using scanning electron microscopy (SEM). By selectively locating the BN modified by LLDPE‐g‐Py within the LLDPE phase, the co‐continuous structure of the LLDPE/PMMA blend was upgraded to a double percolation structure. This double percolation structure establishes a dense and optimal heat transfer network within the polymer matrix. The thermal conductivity of the mBN/LLDPE/PMMA composite with BN loading of 40 wt% was significantly increased to 1.12 Wm−1 K−1, which was 350% higher than that of pure LLDPE, 38% higher than that of the BN/LLDPE composite, and 17% higher than that of the BN/LLDPE/PMMA composite. This study offers valuable insights into non‐covalent modification techniques for BN and the design of double percolation structures in thermal conductive polymer composites.Highlights The double percolation structure was successfully constructed by simple melt blending method with LLDPE and PMMA as matrix and BN as thermal conductive filler. The double percolation structure can significantly promote the efficiency of heat transfer inside the thermal conductive composites. A novel non‐covalent modifier LLDPE‐g‐Py was prepared to modify the surface of BN, and the selective localization of modified BN (mBN) in the LLDPE phase was realized.

Funder

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3