Automated parameterization of velocity pulses in near‐fault ground motions

Author:

Chang Zhiwang12ORCID,Wu Haoran1ORCID,Goda Katsuichiro34ORCID

Affiliation:

1. School of Civil Engineering Southwest Jiaotong University Chengdu China

2. Key Laboratory of Transportation Tunnel Engineering Ministry of Education of China Chengdu China

3. Department of Earth Sciences Western University London Ontario Canada

4. Department of Statistical and Actuarial Sciences Western University London Ontario Canada

Abstract

AbstractProper parameterization of near‐fault ground motions is of critical importance in earthquake engineering, and this process is traditionally performed by directly fitting an analytical pulse model to the original motion. Yet such a process is usually limited by the trial‐and‐error procedure, which is strongly dependent on the initial guesses and may converge to local rather than global minimums. In this study, we propose a progressive (step‐by‐step) iterative approach that can achieve a fully automated parameterization of the velocity pulse contained in near‐fault motions. Assuming that a velocity pulse can be characterized by a pulse model with four key parameters, the approach is conducted by iteratively matching the pulse model to the smoothed ground motion, and the parameterized pulse is analytically derived by best fitting to the smoothed motion not only in the time domain but also in the spectral domain. Specifically, the velocity time history of interest is initially smoothed by a moving average filter so that the low‐frequency content can be filtered out of the original motion, from which the pulse amplitude as well as its epoch is accordingly determined. The coherent velocity pulse is then progressively extracted by performing the nonlinear least‐square‐fitting of the pulse model to the filtered low‐frequency content, during which the remaining parameters, that is, the pulse period, the number of cycles and the phase of the pulse, are estimated successively. Finally, the above procedure is applied repeatedly to the original ground motion by changing an empirical factor controlling the extent of smoothing of the motion so that convergence to local minimums that frequently occurs in the trial‐and‐error procedure could be largely avoided, and best match of the spectrum of the extracted pulse to that of the original motion can be acquired. Fitting quality of the velocity pulses is examined by comparing with existing methods. Prospective applications of the proposed procedure include the stochastic simulations of near‐fault ground motions and parametric investigations of the influence of velocity pulses on various engineered structures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3