Effect of Storage Time on Wax–Wax–Hydrolyzate Canola Oil Oleogels

Author:

Wettlaufer Till1ORCID,Flöter Eckhard1ORCID

Affiliation:

1. Faculty III Process Sciences Department of Food Technology and Food Chemistry Chair of Food Process Engineering Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Berlin Germany

Abstract

AbstractIn this study, two natural waxes, beeswax (BW) and sunflower wax (SFW), are combined with their hydrolyzed variants to deliberately alter the waxes’ composition. The properties of the produced oleogels with different wax inclusion levels (4%, 8%, 12%, and 16% w/w) are investigated after defined intervals (2 days, 7 days, 3 weeks, and 3 months). To do so, the gels are monitored via penetrometry, microscopy, and calorimetry. Although the gels do not show any significant difference during storage in the micrographs, the calorimetric and firmness data reveal meaningful results. The heat of dissolution increases in every system investigated, indicating post‐crystallization processes. Due to different solubilities of wax components, the critical gelling concentration is determined and the solid wax content is retrieved to further address the structure efficiency (S.E.). It is demonstrated that although the quantity of solids over time increases, the scaffolding effectiveness decreases in most cases. Only SFW, most likely due to sintering, shows an increase in S.E. over the storage time. Identified synergistic effects in BW and hydrolyzate mixtures decrease with increasing storage time. This work aims to contribute to a better understanding of the behavior of wax‐based oleogels upon storage.Practical Applications: Although much is known about the gel properties of wax‐based oleogels at short‐term, the behavior over the storage period remains largely unresolved. However, this behavior is immensely important for a real application in fast and slow moving consumer goods. After all, products should always have the same consumer‐relevant properties when stored at variable time frames. This applies to both food and pharmaceutical products. Knowledge of the behavior of wax‐based oleogels in terms of a time‐dependent change can help to choose a targeted product design and ensure product quality and consumer satisfaction.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemistry,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3