Human Umbilical Cord Blood Mesenchymal Stem Cell-Derived PGE2 and TGF-β1 Alleviate Atopic Dermatitis by Reducing Mast Cell Degranulation

Author:

Kim Hyung-Sik12,Yun Jun-Won13,Shin Tae-Hoon1,Lee Sung-Hoon2,Lee Byung-Chul1,Yu Kyung-Rok1,Seo Yoojin1,Lee Seunghee2,Kang Tae-Wook12,Choi Soon Won1,Seo Kwang-Won2,Kang Kyung-Sun12

Affiliation:

1. Adult Stem Cell Research Center College of Veterinary Medicine#406 Biotechnology Incubating Center, Seoul National University, Seoul, South Korea

2. Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, #406 Biotechnology Incubating Center, Seoul National University, Seoul, South Korea

3. Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea

Abstract

Abstract Mesenchymal stem cell (MSC) is a promising tool for the therapy of immune disorders. However, their efficacy and mechanisms in treating allergic skin disorders are less verified. We sought to investigate the therapeutic efficacy of human umbilical cord blood-derived MSCs (hUCB-MSCs) against murine atopic dermatitis (AD) and to explore distinct mechanisms that regulate their efficacy. AD was induced in mice by the topical application of Dermatophagoides farinae. Naïve or activated-hUCB-MSCs were administered to mice, and clinical severity was determined. The subcutaneous administration of nucleotide-binding oligomerization domain 2 (NOD2)-activated hUCB-MSCs exhibited prominent protective effects against AD, and suppressed the infiltration and degranulation of mast cells (MCs). A β-hexosaminidase assay was performed to evaluate the effect of hUCB-MSCs on MC degranulation. NOD2-activated MSCs reduced the MC degranulation via NOD2-cyclooxygenase-2 signaling. In contrast to bone marrow-derived MSCs, hUCB-MSCs exerted a cell-to-cell contact-independent suppressive effect on MC degranulation through the higher production of prostaglandin E2 (PGE2). Additionally, transforming growth factor (TGF)-β1 production from hUCB-MSCs in response to interleukin-4 contributed to the attenuation of MC degranulation by downregulating FcεRI expression in MCs. In conclusion, the subcutaneous application of NOD2-activated hUCB-MSCs can efficiently ameliorate AD, and MSC-derived PGE2 and TGF-β1 are required for the inhibition of MC degranulation. Stem Cells  2015;33:1254–1266

Funder

Bio & Medical Technology Development Program of the National Research Foundation

Ministry of Science, ICT, & Future Planning

Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference49 articles.

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3