Behavioral Modeling and Digital Predistortion for Power Amplifier Based on the Sparse Smooth Twin Support Vector Regression Method

Author:

Xu Changzhi1,Su Min2,Jia Songlin2,Wang Xiaoyu2,Ning Jinzhi2,Li Mingyu3

Affiliation:

1. State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China

2. DongFangHong Satellite Co., Ltd Beijing 100037 China

3. School of Microelectronics and Communication Engineering Chongqing University Chongqing 400044 China

Abstract

In this paper, a sparse smooth twin support vector regression (Sparse‐STSVR) model for power amplifier (PA) behavioral modeling is obtained by pruning the kernel matrix based on Cholesky decomposition. Based on the primal smooth twin support vector regression (STSVR) model, the Nystrom approximate matrix of the kernel matrix is found to replace the original kernel matrix, thus simplifying the Newton iterative parameter extraction process of the primal STSVR model and accelerating the convergence of the algorithm. In addition, the new rank approximation kernel matrix has the characteristic of sparse parameters, which further reduces the computational complexity of the feedforward link of the digital predistorter. The 100 MHz 5G New Radio (NR) signal is used for verify the effect of PA modeling and digital predistortion (DPD) experiment. The results show that the proposed method can improve the normalized mean square error (NMSE) by about 2 ~ 3 dB with fewer coefficients compared with the previously proposed machine learning model, and the predistortion linearization effect improves by nearly 3 dB on the adjacent channel power ratio (ACPR), which achieves a good trade‐off between model performance and computational complexity. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3