Mechanisms underlying episodic nitrate and phosphorus leaching from poorly drained agricultural soils

Author:

Lawrence Nathaniel C.12ORCID,Hall Steven J.13ORCID

Affiliation:

1. Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa USA

2. Savanna Institute Madison Wisconsin USA

3. Department of Plant and Agroecosystem Sciences University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

AbstractPoorly drained depressions within tile‐drained croplands can have disproportionate environmental and agronomic impacts, but mechanisms controlling nutrient leaching remain poorly understood. We monitored nitrate and soluble reactive phosphorus (SRP) leaching using zero‐tension soil lysimeters across a depression to upland gradient over 2 years in a corn–soybean (Zea mays L.–Glycine max [L.] Merr.) field in Iowa. We also measured stable isotopes (δ15N and δ18O) of nitrate to examine its sources and transformations. SRP concentrations peaked during winter and early spring after phosphorus (P) fertilization (mean = 3 mg P L−1), with highest values in the depression, and SRP was relatively stable thereafter (mean = 0.3 mg P L−1) irrespective of periods of high soil moisture that led to widespread iron (Fe) reduction across the field. During a near‐average precipitation year, nitrate stable isotopes indicated direct leaching of fertilizer nitrate within days of application, followed by nitrification of fertilizer ammonium and several weeks of denitrification in depressional soils. Nevertheless, nitrate concentrations remained high (mean = 28 mg N L−1) in the depression despite strong isotopic evidence for denitrification (>48% N removal). During a wet year, nitrate concentrations were lower in the depression than upland and nitrate isotopes were highly variable, consistent with nearly complete nitrate removal by denitrification in the depression and significant denitrification in upland soils. We conclude that poorly drained depressional soils can potentially decrease nitrate leaching via denitrification under sustained wet conditions, but they inconsistently denitrify and are vulnerable to high nitrate and SRP losses when soils are not saturated, especially following fertilization.

Funder

Iowa Water Center, Iowa State University

Iowa Nutrient Research Center, College of Agriculture and Life Sciences, Iowa State University

Publisher

Wiley

Reference59 articles.

1. Bowen G. J.(2021).The online isotopes in precipitation calculator.https://wateriso.utah.edu/waterisotopes/pages/data_access/oipc.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3