Occurrence and persistence of antibiotics administered to cattle in a newly established feedlot

Author:

Trejo Brittany1,Russell Matthew2,Bartelt‐Hunt Shannon3,Beni Nasrin Naderi3,Snow Daniel D.4ORCID,Messer Tiffany L.2ORCID

Affiliation:

1. School of Natural Resources East Campus University of Nebraska–Lincoln Lincoln NE USA

2. Biosystems and Agricultural Engineering Department University of Kentucky Lexington KY USA

3. Department of Civil and Environmental Engineering University of Nebraska–Lincoln Lincoln NE USA

4. Water Sciences Laboratory & Nebraska Water Center, part of the Daugherty Water for Food Global Institute Institute of Agriculture and Natural Resources University of Nebraska–Lincoln Lincoln Nebraska USA

Abstract

AbstractThe practice of using therapeutic and prophylactic veterinary antibiotics in livestock farming is a worldwide phenomenon. Over the last decade, there has been a growing concern of antibiotic residues entering the environment via animal manure. Similar studies have focused on the occurrence and biological effects of antibiotics in land‐applied animal feedlots; however, limited research has been conducted on the occurrence and persistence of antibiotics in animal feedlots. Therefore, the objective of this study was to evaluate antibiotic persistence, fate, and transport in surface water runoff and feedlot sediment in feedlot pens with livestock either receiving or not receiving antibiotic treatments through injection and feed. The two antibiotics (tylosin and monensin) added to animal feed were observed to persist in the soil environment for more than 30 days along with injected florfenicol. Monensin (5.6× higher) and tylosin (20× higher) were significantly higher in livestock pens receiving antibiotics compared to livestock pens not receiving the antibiotics. Further, rainfall was observed to significantly impact soil surface concentrations of florfenicol. Other antibiotics administrated by injection were not observed to statistically increase in concentrations in runoff or feedlot sediment. Our findings emphasize antibiotics administered in feedlots have the potential to persist and remain in feedlot sediment and runoff, particularly in instances of regular administration in feed.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3