Nitrogen removal performance in roadside stormwater bioretention cells amended with drinking water treatment residuals

Author:

Betz Carl12,Ament Michael R.34ORCID,Hurley Stephanie E.45ORCID,Roy Eric D.156ORCID

Affiliation:

1. Rubenstein School of Environment & Natural Resources University of Vermont Burlington Vermont USA

2. Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program University of Wisconsin–Madison Madison Wisconsin USA

3. Minnesota Pollution Control Agency St. Paul Minnesota USA

4. Department of Plant & Soil Science University of Vermont Burlington Vermont USA

5. Gund Institute for Environment University of Vermont Burlington Vermont USA

6. Department of Civil & Environmental Engineering University of Vermont Burlington Vermont USA

Abstract

AbstractBioretention cells, a type of green stormwater infrastructure, have been shown to reduce runoff volumes and remove a variety of pollutants. The ability of bioretention cells to remove nitrogen and phosphorus, however, is variable, and bioretention soil media can act as a net exporter of nutrients. This is concerning as excess loading of nitrogen and phosphorus can lead to eutrophication of surface waters, which green stormwater infrastructure is intended to ameliorate. Drinking water treatment residuals (DWTR), metal (hydr)oxide‐rich by‐products of the drinking water treatment process, have been studied as an amendment to bioretention soil media due to their high phosphorus sorption capacity. However, very few studies have specifically addressed the effects that DWTRs may have on nitrogen removal performance within bioretention cells. Here, we investigated the effects of DWTR amendment on nitrogen removal in bioretention cells treating stormwater in a roadside setting. We tested the capacity of three different DWTRs to either retain or leach dissolved inorganic nitrogen in the laboratory and also conducted a full‐scale field experiment where DWTR‐amended bioretention cells and experimental controls were monitored for influent and effluent nitrogen concentrations over two field seasons. We found that DWTRs alone exhibit some capacity to leach nitrate and ammonium, but when integrated into sand‐ and compost‐based bioretention soil media, DWTRs have little to no effect on the removal of nitrogen in bioretention cells. These results suggest that DWTRs can be used in bioretention media for enhanced phosphorus retention without the risk of contributing to nitrogen export in bioretention effluent.

Funder

Gund Institute for Environment

Lake Champlain Sea Grant, University of Vermont

U.S. Environmental Protection Agency

Lintilhac Foundation

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3