Affiliation:
1. Department of Clinical Genomics Mayo Clinic Rochester Minnesota USA
2. Department of Anatomy University of Pécs, Medical School Pécs Hungary
3. Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota USA
4. Department of Biophysics University of Pécs, Medical School Pécs Hungary
Abstract
AbstractALG1‐CDG is a rare, clinically variable metabolic disease, caused by the defect of adding the first mannose (Man) to N‐acetylglucosamine (GlcNAc2)‐pyrophosphate (PP)‐dolichol to the growing oligosaccharide chain, resulting in impaired N‐glycosylation of proteins. N‐glycosylation has a key role in functionality, stability, and half‐life of most proteins. Therefore, congenital defects of glycosylation typically are multisystem disorders. Here we report a 3‐year‐old patient with severe neurological, cardiovascular, respiratory, musculoskeletal and gastrointestinal symptoms. ALG1‐CDG was suggested based on exome sequencing and Western blot analysis. Despite her severe clinical manifestations and genetic diagnosis, serum transferrin glycoform analysis was normal. Western blot analysis of highly glycosylated proteins in fibroblasts revealed decreased intercellular adhesion molecule 1 (ICAM1), but normal lysosomal associated membrane protein 1 and 2 (LAMP1 and LAMP2) expression levels. Glycoproteomics in fibroblasts showed the presence of the abnormal tetrasacharide. Reviewing the literature, we found 86 reported ALG1‐CDG patients, but only one with normal transferrin analysis. Based on our results we would like to highlight the importance of multiple approaches in diagnosing ALG1‐CDG, as normal serum transferrin glycosylation or other biomarkers with normal expression levels can occur.
Funder
National Institute of Neurological Disorders and Stroke
National Center for Advancing Translational Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献