Fragment‐based deep molecular generation using hierarchical chemical graph representation and multi‐resolution graph variational autoencoder

Author:

Gao Zhenxiang12ORCID,Wang Xinyu12,Blumenfeld Gaines Blake12,Shi Xuetao123,Bi Jinbo123,Song Minghu3

Affiliation:

1. Department of Computer Science and Engineering University of Connecticut Storrs 06269 CT

2. Current address: Center for Artificial Intelligence in Drug Discovery School of Medicine Case Western Reserve University Cleveland 44106 OH

3. Department of Biomedical Engineering University of Connecticut Storrs 06269 CT

Abstract

AbstractGraph generative models have recently emerged as an interesting approach to construct molecular structures atom‐by‐atom or fragment‐by‐fragment. In this study, we adopt the fragment‐based strategy and decompose each input molecule into a set of small chemical fragments. In drug discovery, a few drug molecules are designed by replacing certain chemical substituents with their bioisosteres or alternative chemical moieties. This inspires us to group decomposed fragments into different fragment clusters according to their local structural environment around bond‐breaking positions. In this way, an input structure can be transformed into an equivalent three‐layer graph, in which individual atoms, decomposed fragments, or obtained fragment clusters act as graph nodes at each corresponding layer. We further implement a prototype model, named multi‐resolution graph variational autoencoder (MRGVAE), to learn embeddings of constituted nodes at each layer in a fine‐to‐coarse order. Our decoder adopts a similar but conversely hierarchical structure. It first predicts the next possible fragment cluster, then samples an exact fragment structure out of the determined fragment cluster, and sequentially attaches it to the preceding chemical moiety. Our proposed approach demonstrates comparatively good performance in molecular evaluation metrics compared with several other graph‐based molecular generative models. The introduction of the additional fragment cluster graph layer will hopefully increase the odds of assembling new chemical moieties absent in the original training set and enhance their structural diversity. We hope that our prototyping work will inspire more creative research to explore the possibility of incorporating different kinds of chemical domain knowledge into a similar multi‐resolution neural network architecture.

Funder

National Science Foundation

Publisher

Wiley

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,Molecular Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3