A new set of KNIME nodes implementing the QPhAR algorithm

Author:

Kohlbacher Stefan M.1,Ibis Gökhan2,Permann Christian12,Bryant Sharon2,Langer Thierry12,Seidel Thomas1ORCID

Affiliation:

1. Division of Pharmaceutical Chemistry Department of Pharmaceutical Sciences University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria

2. Inte:Ligand GmbH Mariahilferstraße 74B/11 1070 Vienna Austria

Abstract

AbstractDissemination of novel research methods, especially in the form of chemoinformatics software, depends heavily on their ease of applicability for non‐expert users with only a little or no programming skills and knowledge in computer science. Visual programming has become widely popular over the last few years, also enabling researchers without in‐depth programming skills to develop tailored data processing pipelines using elements from a repository of predefined standard procedures. In this work, we present the development of a set of nodes for the KNIME platform implementing the QPhAR algorithm. We show how the developed KNIME nodes can be included in a typical workflow for biological activity prediction. Furthermore, we present best‐practice guidelines that should be followed to obtain high‐quality QPhAR models. Finally, we show a typical workflow to train and optimise a QPhAR model in KNIME for a set of given input compounds, applying the discussed best practices.

Publisher

Wiley

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,Molecular Medicine,Structural Biology

Reference13 articles.

1. KNIME: The Konstanz Information Miner

2. “Create a New Java based KNIME Extension ” can be found underhttps://docs.knime.com/latest/analytics_platform_new_node_quickstart_guide/index.html#_introduction n.d.

3. QPHAR: quantitative pharmacophore activity relationship: method and validation

4. S. Kohlbacher 2022.

5. NeuroDeRisk “NeuroDeRisk - Neurotoxicity De-Risking in Preclinical Drug Discovery ” can be found underhttps://neuroderisk.eu/ 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3