De novo drug design based on patient gene expression profiles via deep learning

Author:

Yamanaka Chikashige1ORCID,Uki Shunya1,Kaitoh Kazuma12,Iwata Michio1,Yamanishi Yoshihiro12

Affiliation:

1. Department of Bioscience and Bioinformatics Faculty of Computer Science and Systems Engineering Kyushu Institute of Technology, 680-4 Kawazu Iizuka Fukuoka 820-8502 Japan

2. Graduate School of Informatics Nagoya University, Chikusa Nagoya 464-8602 Japan

Abstract

AbstractComputational de novo drug design is a challenging issue in medicine, and it is desirable to consider all of the relevant information of the biological systems in a disease state. Here, we propose a novel computational method to generate drug candidate molecular structures from patient gene expression profiles via deep learning, which we call DRAGONET. Our model can generate new molecules that are likely to counteract disease‐specific gene expression patterns in patients, which is made possible by exploring the latent space constructed by a transformer‐based variational autoencoder and integrating the substructures of disease‐correlated molecules. We applied DRAGONET to generate drug candidate molecules for gastric cancer, atopic dermatitis, and Alzheimer's disease, and demonstrated that the newly generated molecules were chemically similar to registered drugs for each disease. This approach is applicable to diseases with unknown therapeutic target proteins and will make a significant contribution to the field of precision medicine.

Funder

Japan Agency for Medical Research and Development

Publisher

Wiley

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,Molecular Medicine,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3