Conclusive Evidence for OCT4 Transcription in Human Cancer Cell Lines: Possible Role of a Small OCT4-Positive Cancer Cell Population

Author:

Miyamoto Tomoyuki12,Mizuno Nobuhiko1,Kosaka Mitsuko1,Fujitani Yoko1,Ohno Eiji2,Ohtsuka Aiji1

Affiliation:

1. Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, Japan

2. Faculty of Medical Bioscience, Department of Medical Life Science, Kyushu University of Health and Welfare/Cancer Cell Institute of Kyushu University of Health and Welfare, Yoshino, Nobeoka, Miyazaki, Japan

Abstract

Abstract The role of octamer-binding transcription factor 4 (OCT4) in human cancer is still debated. Although many studies have been published on human OCT4, determining which of the findings are accurate or which are false-positives is currently challenging. We thus developed the most reliable method to date for highly specific and comprehensive detection of genuine OCT4-transcript variants without false-positive results. Our results provided clear evidence that the transcripts of OCT4A, OCT4B, OCT4B1, and other novel splicing variants are indeed present in many cancer cell lines, but are rarely detected in normal tissue-derived differentiated cells. Using the tagged genomic transgene, we then verified endogenous OCT4A translation in cancer cell subpopulations. Moreover, analysis of possible other protein isoforms by enforced expression of OCT4B variants showed that the B164 isoform, designated human OCT4C, is preferentially produced in a cap-dependent manner. We confirmed that the OCT4C isoform, similar to OCT4A, can transform non-tumorigenic fibroblasts in vitro. Finally, ablation of OCT4-positive cells using promoter-driven diphtheria toxin A in high malignant cancer cells caused a significant decrease in migration and Matrigel invasion. These findings strongly suggest a significant contribution of OCT4 to the phenotype of human cancer cells.

Funder

Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science

Translational Research Network Program from the Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3