An analytical method for free vibration analysis of multi‐directional functionally graded porous doubly‐curved shells in thermal environment with various boundary conditions

Author:

Pham Quoc‐Hoa1ORCID,Tran Van Ke2ORCID,Nguyen Phu‐Cuong3ORCID

Affiliation:

1. Faculty of Engineering and Technology Nguyen Tat Thanh University Ho Chi Minh City Vietnam

2. Faculty of Mechanical Engineering Le Quy Don Technical University Hanoi Vietnam

3. Advanced Structural Engineering Laboratory, Department of Structural Engineering, Faculty of Civil Engineering Ho Chi Minh City Open University Ho Chi Minh City Vietnam

Abstract

This paper uses the analytical method with arbitrary boundary conditions to model and analyze the free vibrations of multi‐directionally functionally graded porous (MFGP) doubly‐curved shallow shells resting on the Pasternak foundation in a temperature environment. It is anticipated that all mechanical parameters, except Poisson's ratio, will change in the direction of length, width, and thickness. To comprehensively describe the shell's displacement, strain, and stress fields, a modified first‐order shear deformation theory (FSDT) with an assumption of cosine distribution shear stresses has been developed. The fact that the enhanced FSDT theory does not require the use of shear correction and that the shear stress at the two free faces of the shells is zero are two of the theory's most significant advantages. Using Hamilton's principle and improved FSDT, one may get the governing equation for free vibration analysis of MFGP doubly‐curved shallow shells. The Galerkin approach is proposed to solve the governing equation of MFGP doubly‐curved shallow shells with various boundary conditions. The trustworthiness of the article is evaluated via its publication in the article model's several special cases. From this point on, a collection of findings about the natural frequency of MFGP doubly‐curved shallow shells is identified and shown in the form of tables and graphs. The results provided in this manuscript can be used as a benchmark solution for further studies as far as the vibration behavior of the MFGP doubly‐curved shallow shells is concerned.

Publisher

Wiley

Reference43 articles.

1. Design and analysis of shell structures;Farshad M.;Springer Sci. + Bus. Media Dordr.,1992

2. Theory of Shell Structures

3. M.Schenk Folded shell structures no. August p.149 2011 [Online]. Available:http://www.markschenk.com/research/files/PhDthesis-MarkSchenk.pdf.

4. Functionally graded materials: A review of fabrication and properties

5. Functionally Graded Composite Materials: An Overview

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3