A Non‐Volatile, Thermo‐Reversible, and Self‐Protective Gel Electrolyte Providing Highly Precise and Reversible Thermal Protection for Lithium Batteries

Author:

Liu Zezhao1,Yu Qian1,Oli Nischal2,Gomez Jose Fernando Florez2,Qiu Shen3,Tian Haoran1,Qiu Qian1,Sun Wei1,Li Kuihao1,Liu Zhishan1,Chen Mingming1,Yuan Jinliang1,Wu Xianyong3,Xia Lan1

Affiliation:

1. Ningbo Innovation Team on New Energies and Marine Applications Faculty of Maritime and Transportation Ningbo University Ningbo 315211 P. R. China

2. Department of Physics University of Puerto Rico San Juan Puerto Rico 00931 USA

3. Department of Chemistry University of Puerto Rico San Juan Puerto Rico 00931 USA

Abstract

AbstractThe safety issue represents a long‐standing obstacle that retards large‐scale applications of high‐energy lithium batteries. Among different causes, thermal runaway is the most prominent one. To date, various approaches have been proposed to inhibit thermal runaway; however, they suffer from some intrinsic drawbacks, either being irreversible (one‐time protection), using volatile and flammable electrolytes, or delayed thermal protection (140–150 °C). Herein, this work exploits a non‐volatile, non‐flammable, and thermo‐reversible polymer/ionic liquid gel electrolyte as a built‐in safety switch, which provides highly precise and reversible thermal protection for lithium batteries. At high temperature, the gel electrolyte experiences phase separation and deposits polymer on the electrode surfaces/separators, which blocks Li+ insertion reactions and thus prevents thermal runaway. When the temperature decreases, the gel electrolyte restores its original properties and battery performance resumes. Notably, the optimal protection effect is achieved at 110 °C, which is the critical temperature right before thermal runaway. More importantly, such a thermal‐protection process can repeat multiple times without compromising the battery performance, indicating extraordinary thermal reversibility. To the authors' knowledge, such a precise and reversible protection effect has never been reported in any electrolyte systems, and this work opens an exciting avenue for safe operation of high‐energy Li batteries.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3