Tantalum Nitride‐Enabled Solar Water Splitting with Efficiency Above 10%

Author:

Pihosh Yuriy1ORCID,Nandal Vikas2ORCID,Higashi Tomohiro3ORCID,Shoji Ryota4ORCID,Bekarevich Raman5ORCID,Nishiyama Hiroshi1ORCID,Yamada Taro1,Nicolosi Valeria6ORCID,Hisatomi Takashi7ORCID,Matsuzaki Hiroyuki4ORCID,Seki Kazuhiko2ORCID,Domen Kazunari17ORCID

Affiliation:

1. Office of University Professors The University of Tokyo 2‐11‐16 Yayoi, Bunkyo‐ku Tokyo 113–8656 Japan

2. Global Zero Emission Research Center National Institute of Advanced Industrial Science and Technology Tsukuba 16‐1 Onogawa Ibaraki 305–8569 Japan

3. Institute for Tenure Track Promotion University of Miyazaki 1‐1 Gakuen‐Kibanadai‐Nishi Miyazaki 889–2192 Japan

4. Research Institute for Material and Chemical Measurement National Metrology Institute of Japan (NMIJ) National Institute of Advanced Industrial Science and Technology Tsukuba, 1‐1‐1 Higashi Ibaraki 305–8565 Japan

5. Advanced Microscopy Laboratory Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Trinity College Dublin Dublin 2 D02 DA31 Ireland

6. School of Chemistry Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research Centre (AMBER) Trinity College Dublin Dublin 2 D02 W9K7 Ireland

7. Research Initiative for Supra‐Materials Interdisciplinary Cluster for Cutting Edge Research Shinshu University 4‐17‐1 Wakasato, Nagano‐shi Nagano 380–8553 Japan

Abstract

AbstractDesigning photoanode semiconducting materials with visible‐light absorption and minimal charge‐carrier recombination for achieving efficient solar‐to‐hydrogen (STH) conversion is challenging. Here, hybrid Ta3N5 nanorods and thin films are developed on transparent GaN/Al2O3 substrates. A Ta3N5 photoanode with a loaded cocatalyst achieves the best current density, i.e. 10.8 mA cm−2, at 1.23 V versus the reversible hydrogen electrode under simulated AM 1.5G solar illumination. In a tandem configuration with dual‐CuInSe2 photovoltaic cells, this semi‐transparent photoanode achieves a reproducible STH energy conversion efficiency of ≈12% (the highest among photocatalytic materials), and remains at more than 10% for 6.7 h of tandem device operation. Detailed transient absorption spectroscopy and theoretical analysis indicates that this high performance originates from efficient light absorption and hole utilization inside the Ta3N5 material. The results show the feasibility of suppressing dominant optical and charge‐carrier‐ recombination losses by using nanostructured visible‐light‐absorbing materials for practical STH conversion.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3