Supramolecular Sidechain Topology Mediated Pseudo‐Nanophase Separation Engineering for High‐Performance Redox Flow Battery Membranes

Author:

Xiong Ping1,Li Aimin1,Xiao Sisi1,Jiang Yunqi1,Peng Sangshan1ORCID,He Qing1

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineer Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China

Abstract

AbstractPseudo‐nanophase separation enabled by supramolecular‐interaction‐grafted sidechains proves a promising alternative for constructing high‐performance commercially viable membranes with quick ion transport, excellent chemical stability, and simplified membrane manufacturing. Nonetheless, the concept of pseudo‐nanophase separation is still in nuce, and determinants for controlling pseudo‐nanophase separation remain somewhat opaque. In this contribution, supramolecular sidechain topology is found critical to engineering pseudo‐nanophase separation. Three supramolecular sidechain topological (viz. linear, branched, and cyclic) structures are investigated using experimental and theoretical protocols, and the underlying mechanisms by which supramolecular sidechain topology alters the microstructure and ion‐conducting behaviors of the membranes are proposed. Consequently, the cyclic sidechain‐mediated membrane achieves the highest proton conductivity with an area resistance as low as 0.10 Ω cm2. The resulting membrane endows an acidic aqueous redox flow battery with an energy efficiency of up to 80.7% even at high current densities of 220 mA cm−2, breaking the record set by the pseudo‐nanophase separation strategy constructed membranes and ranking among the highest values ever documented. This study advances the understanding of supramolecular sidechain topology for the design and preparation of high‐performance membranes via pseudo‐nanophase separation engineering for flow batteries and beyond.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3