Affiliation:
1. State Key Laboratory of Organic‐Inorganic Composites Department of Chemical Engineering Beijing University of Chemical Technology 100029 Beijing China
2. Global Battery Materials BASF (China) Co., Ltd 300 Jiang Xin Sha Road, Pudong 200137 Shanghai P. R. China
3. State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
Abstract
AbstractLi(NixCoyMnz)O2 (x + y + z = 1, NCM), as one of the most dominant cathode materials in electric vehicle (EV) batteries, faces the challenges of poor cycling stability and safety concerns with the increase of Ni content and charge/discharge capacity. Single crystalline NCM (SC‐NCM) materials have been developed to mitigate these challenges, owing to their lower surface areas, fewer grain boundaries, and better morphological stability. Here, the preparation strategies of SC‐NCM are summarized, including continuous high‐temperature sintering (CHTS), molten salt method, pulse high‐temperature sintering (PHTS), and controllable growth with special orientations or sizes. CHTS produces irregular SC‐NCM particles, but is accompanied by Li‐volatilization and agglomeration during long‐term sintering. The molten salt helps to lower calcination temperature and generate well‐defined crystalline material, but generally causes large capacity loss due to the Li/H exchange in the following water rinsing procedure. To address the above challenges, the PHTS strategy has recently been recently proposed, which mitigates Li‐loss through shortened high‐temperature stage and avoids further water rinsing steps. For improving the C‐rate performance, controllable crystal growth with specific sizes and crystal orientations is highly desired, which calls for further investigation and upgrading of current large‐scale preparation technology.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献