Perspective on the Preparation Methods of Single Crystalline High Nickel Oxide Cathode Materials

Author:

Zhou Weidong1ORCID,Huang Hao1,Liu Xiaohang2,Gao Jian1,Hao Shu‐meng1,Yang Yong3,Qiu Jieshan1

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites Department of Chemical Engineering Beijing University of Chemical Technology 100029 Beijing China

2. Global Battery Materials BASF (China) Co., Ltd 300 Jiang Xin Sha Road, Pudong 200137 Shanghai P. R. China

3. State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China

Abstract

AbstractLi(NixCoyMnz)O2 (x + y + z = 1, NCM), as one of the most dominant cathode materials in electric vehicle (EV) batteries, faces the challenges of poor cycling stability and safety concerns with the increase of Ni content and charge/discharge capacity. Single crystalline NCM (SC‐NCM) materials have been developed to mitigate these challenges, owing to their lower surface areas, fewer grain boundaries, and better morphological stability. Here, the preparation strategies of SC‐NCM are summarized, including continuous high‐temperature sintering (CHTS), molten salt method, pulse high‐temperature sintering (PHTS), and controllable growth with special orientations or sizes. CHTS produces irregular SC‐NCM particles, but is accompanied by Li‐volatilization and agglomeration during long‐term sintering. The molten salt helps to lower calcination temperature and generate well‐defined crystalline material, but generally causes large capacity loss due to the Li/H exchange in the following water rinsing procedure. To address the above challenges, the PHTS strategy has recently been recently proposed, which mitigates Li‐loss through shortened high‐temperature stage and avoids further water rinsing steps. For improving the C‐rate performance, controllable crystal growth with specific sizes and crystal orientations is highly desired, which calls for further investigation and upgrading of current large‐scale preparation technology.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3