A Hundreds‐Milliampere‐Hour‐Scale Solid‐State Aluminum–Sulfur Pouch Cell

Author:

Huang Zheng1,Li Shijie2,Wang Zhe1,Wang Wei1,Lei Haiping1,Jiao Shuqiang1ORCID

Affiliation:

1. State Key Laboratory of Advanced Metallurgy University of Science and Technology Beijing Beijing 100083 P. R. China

2. Institute of Advanced Structure Technology Beijing Institute of Technology Beijing 100081 P. R. China

Abstract

AbstractAluminum‐sulfur (Al–S) batteries are exploited as an ideal power source for grid‐scale energy storage due to the abundant Al and S resources and superior safety. However, the short lifespan and lack of appropriate current collectors for positive electrodes have restricted the large‐size manufacture and practicability of Al–S batteries. Here a solid‐state electrolyte and current collector‐free positive electrode are demonstrated to construct a large‐size solid‐state Al–S pouch cell. The ionic liquid‐impregnated metal–organic‐framework solid electrolytes are filled into the gel polymer electrolyte to achieve the large‐size production of composite solid‐state electrolyte (MSE@GPE). Meanwhile, the MSE@GPE electrolytes, serving as the binder and ionic conductor, are introduced into sulfur‐anchored cobalt/nitrogen co‐doped graphene to prepare an all‐in‐one composite sulfur‐positive electrode without a current collector. The as‐assembled Al–S pouch cell delivers a reversible capacity of 288 mAh and a cell‐level energy density of >90 Wh kg−1. Furthermore, the cycle life of this Al–S pouch cell can reach over 400 times with capacity retention of 80%, benefiting from the significant inhibiting effect of MSE@GPE electrolyte on the shuttle effect of polysulfide. The results provide a path for fabricating practical Al–S batteries, narrowing the gap between their high theoretical specific energy and the realization in practical operation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3