MgB2Se4 Spinels (B = Sc, Y, Er, Tm) as Potential Mg‐Ion Solid Electrolytes – Partial Ionic Conductivity and the Ion Migration Barrier

Author:

Glaser Clarissa12ORCID,Dillenz Manuel3,Sarkar Kanchan3,Sotoudeh Mohsen3,Wei Zhixuan12,Indris Sylvio45,Maile Ruben6,Rohnke Marcus12,Müller‐Buschbaum Klaus6,Groß Axel3,Janek Jürgen12

Affiliation:

1. Institute of Physical Chemistry Justus Liebig University Giessen Heinrich‐Buff‐Ring 17 D‐35392 Giessen Germany

2. Center for Materials Research (ZfM) Justus Liebig University Giessen Heinrich‐Buff‐Ring 16 D‐35392 Giessen Germany

3. Institute of Theoretical Chemistry Ulm University Albert‐Einstein‐Allee 11 D‐89081 Ulm Germany

4. Institute for Applied Materials‐Energy Storage Systems (IAM‐ESS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany

5. Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) Université Mohammed VI Polytechnique (UM6P) Lot 660, Hay Moulay Rachid Ben Guerir 43150 Morocco

6. Institute of Inorganic and Analytical Chemistry Justus Liebig University Giessen Heinrich‐Buff‐Ring 17 D‐35392 Giessen Germany

Abstract

AbstractThe magnesium chalcogenide spinel MgSc2Se4 with high Mg‐ion room‐temperature conductivity has recently attracted interest as solid electrolyte for magnesium ion batteries. Its ionic/electronic mixed‐conducting nature and the influence of the spinel composition on the conductivity and Mg2+ migration barrier are yet not well understood. Here, results from a combined experimental and computational study on four MgB2Se4 spinels (B = Sc, Y, Er, Tm) are presented. The room‐temperature ionic conductivities (σion = 2 × 10−5–7 × 10–5 S cm−1) of the spinels are accurately measured, as electron transport is effectively suppressed by purely Mg‐ion conducting electrode interlayers. Using the same approach, reversible Mg plating/stripping as well as good electrochemical stability are achieved. Driven by the good accordance of the computationally and experimentally obtained Mg2+ migration barriers Ea(th) and Ea, respectively, further periodic density functional calculations are performed on the MgB2Se4 spinel system, revealing the role of trigonal distortion on the migration path geometry and Ea(th). These findings provide deeper understanding how to reach small Mg2+ migration barriers Ea in the MgB2Se4 spinels.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3