Probing Electronic Structure Changes in Cobalt Oxalate Anode for Lithium‐Ion Batteries

Author:

Li Yuhao1,Dai Penghao1,Liu Qingshan1,Yu Guobin1,Wang Tiansheng1,Wu Yangyang1,Li Qiang1,Wang Meng2,Wang Yaqun3,Zhu Yue4,Li Hongsen1ORCID

Affiliation:

1. College of Physics Qingdao University Qingdao 266071 China

2. Binzhou Polytechnic Binzhou 256600 China

3. College of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao 266590 China

4. School of Materials Science and Engineering Ocean University of China Qingdao 266404 China

Abstract

AbstractTransition metal‐based materials exhibit a broad range of catalytic activities in numerous electrochemical processes. Their displayed catalytic functions rely essentially on their distinctive electronic structures, changes of which play pivotal roles in dictating reaction dynamics within many electrochemical devices. Nevertheless, accurately probing electronic structure changes, especially in real‐time, of active materials remains a formidable challenge. In this work, a viable approach to achieve it within a CoC2O4/Li model system by employing a combined microscopic is demonstrated, spectroscopic analysis, plus a unique operando magnetometry technique. The findings reveal that upon completion of the conventional conversion of CoC2O4, a surface‐dominated capacitance emerges at the Co/Li2C2O4 interface owing to the injection of spin‐polarized electrons. Subsequently, the decomposition of Li2C2O4 proceeds through the releasing of the spin‐polarized electrons from Co, which, therefore serve as a catalyst leading to further discharge products. Such real‐time monitoring of electron transfer is realized by in situ monitoring electronic structure changes of Co, manifested by its intriguing magnetization alterations during the process. This work highlights a novel characterization tool that provides a solid explanation for the commonly observed large capacities in this type of materials and sheds light on design rules and selection guidance of materials for high‐performance electrochemical energy storage systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3