Influence of Carbonate Electrolyte Solvents on Voltage and Capacity Degradation in Li‐Rich Cathodes for Li‐ion Batteries

Author:

Wang Rui12ORCID,Weng Bo1,Mahadevegowda Amoghavarsha23,Temprano Israel245,Wang Heng12,He Ze1,Ducati Caterina23,Xiao Yinguo6,Grey Clare P.24,De Volder Michael F. L.12ORCID

Affiliation:

1. Department of Engineering University of Cambridge 17 Charles Babbage Road Cambridge CB3 0FS UK

2. The Faraday Institution Quad One Harwell Science and Innovation Campus Didcot OX11 0RA UK

3. Department of Materials Science & Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK

4. Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK

5. CICA‐Centro Interdisciplinar de Química e Bioloxía and Departamento de Química Facultade de Ciencias Universidade da Coruña A Coruña 15071 Spain

6. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 China

Abstract

AbstractLithium‐rich cobalt‐free cathodes, such as Li1.2Mn0.6Ni0.2O2 (LMR), are promising next‐generation cathode materials because of their high energy density, cost efficiency, and sustainability. Nevertheless, LMRs suffer from degradation problems such as voltage decay during cycling. Different LMR surface doping and coating strategies are proposed to suppress LMR voltage decay with varying extents of success. Here, the role played by different electrolyte solvents in oxygen loss from the LMR surface is instead investigated. X‐ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), synchrotron XRD, and online electrochemical mass spectrometry (OEMS) results show that ethylene carbonate (EC) leads to accelerated oxygen loss from the LMR surface. As a result, cycling LMR cathodes in EC‐free electrolytes such as pure EMC, improves the capacity retention and reduces voltage decay. This approach provides a new strategy to increase the cycling stability of LMR cathodes, which is important for the development of more sustainable high‐performance batteries.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3