Glutamic Acid Induced Proton Substitution of Sodium Vanadate Cathode Promotes High Performance in Aqueous Zinc‐Ion Batteries

Author:

Zhang Pengtao1,Gong Yangyang1,Fan Shuang1,Luo Zhaoyan1,Hu Jiangtao1,Peng Chao2,Zhang Qianling1,Li Yongliang1,Ren Xiangzhong1ORCID

Affiliation:

1. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China

2. Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China

Abstract

AbstractLacking strategies to simultaneously address the narrow interlayer spacing, irreversible phase transitions, dissolution and electrical transport issues of vanadium oxides is restricting their application in aqueous zinc‐ion batteries. Herein, to address these challenges concurrently, an organic‐inorganic hybrid cathode is explored, HNaV6O16·4H2O‐Glu (HNVO‐Glu), through a guest material‐mediated NVO synthesis strategy utilizing glutamic acid (Glu) to induce Na substituted by proton and enable crystal transformation of Na2V6O16·3H2O (NVO). Specially, Glu insertion kills three birds with one arrow: i) induces the formation of a structurally stable monoclinic HNaV6O16·4H2O phase by introducing H into the NVO framework, preventing structural phase change and collapse of NVO material; ii) acts as a pillar to expand the interlayer spacing, which improves the Zn2+ diffusion kinetics; moreover, the polar groups on the Glu surface weaken the electrostatic interaction between Zn2+ and the host materials, further enhancing the zinc‐ionic transport rate; iii) enhances the electrical conductivity of HNVO by converting the p‐type semiconductor into the n‐type semiconductor structure. Consequently, the HNVO‐Glu exhibits a high specific capacity (354.6 mAh g−1 at 1 A g−1), excellent Zn2+ diffusion capability (10−9 to 10−7 cm2 s−1) and outstanding cycling stability with a capacity retention of 87.2% after 12 000 cycles at 10 A g−1.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3