Oligomeric Acceptor Enables High‐Performance and Robust All‐Polymer Solar Cells with 17.4% Efficiency

Author:

Li Zhixiang1,Zhang Zhe1,Chen Hongbin1,Zhang Yunxin2,Yi Yuan‐Qiu‐Qiang3,Liang Ziqi4,Zhao Bin4,Li Miaomiao4,Li Chenxi1,Yao Zhaoyang1,Wan Xiangjian1,Kan Bin2,Chen Yongsheng1ORCID

Affiliation:

1. State Key Laboratory and Institute of Elemento‐Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China

2. School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China

3. Printable Electronics Research Center Nano Devices and Materials Division Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou Jiangsu 215123 China

4. School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China

Abstract

AbstractDeveloping efficient and stable all‐polymer solar cells (all‐PSCs) has received increasing attention because of their mechanical robustness for flexible devices. Based on the CH‐series small molecule acceptors, a new polymer acceptor (PZC24) is reported and obtains a decent power conversion efficiency (PCE) of 16.82% when blended with PM6. To further improve the performance, an oligomeric acceptor (CH‐D1), which possesses the same backbone structure as PZC24, is proposed and synthesized as the third component for all‐PSC system. The creative strategy improves the crystallinity and molecular packing, and can maintain the efficient charge transport channels of the all‐PSCs binary system. Therefore, the PM6:PZC24:CH‐D1 based ternary devices exhibit an impressive PCE of 17.40%, among the highest value of all‐PSCs. Compared to the PM6:PZC24, the ternary device exhibits enhanced photosoaking stability and thermal stability, simultaneously. In addition, the introduction of oligomeric acceptor does not weaken the mechanical robustness of all‐PSCs. As such, the ternary flexible devices display an excellent PCE of 15.35%. Importantly, this strategy shows excellent universality in PM6:PY‐IT and PM6:PY‐V‐γ all‐PSCs with improved PCEs over 17%. The results provide a feasible strategy to simultaneously improve photovoltaic efficiency and stability of all‐PSCs devices and herald a bright future for all‐PSCs.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Nankai University

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3