The Microscopic Mechanism of Lithiation and Delithiation in the Ag/C Buffer Layer for Anode‐Free Solid‐State Batteries

Author:

Xie Fengyu12ORCID,Diallo Mouhamad Said12ORCID,Kim Haegyeom2ORCID,Tu Qingsong Howard3ORCID,Ceder Gerbrand12ORCID

Affiliation:

1. Department of Materials Science and Engineering University of California Berkeley CA 94720 USA

2. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

3. Department of Mechanical Engineering Rochester Institute of Technology Rochester NY 14623 USA

Abstract

AbstractLithium metal solid‐state batteries (LMSSBs) have demonstrated their high energy density and cycling performance at high current densities in an anode‐free architecture, featuring a thin Ag/C composite buffer layer (BL) between the current collector (CC) and the solid electrolyte (SE). This study explains the microscopic mechanism of the Ag/C BL by using first‐principles atomistic and continuum modeling. It is shown that Ag effectively acts as a homogeneous solid‐solution beyond AgLi2.32 and maintains a positive potential even at AgLi25 during lithiation. Key factors underlying the working of the Ag/C BL include lower interfacial resistance at the BL/CC interface than at the BL/SE interface, leading to predominant Li deposition on BL/CC, and substantial Ag–Li volume expansion during lithiation. This, combined with stronger BL/SE adhesion, causes BL/SE separation and Ag–Li extrusion toward the CC side. During delithiation, Ag re‐precipitates as nanoparticles uniformly on the CC, with its positive lithiation potential homogenizing Li currents in subsequent cycles. Other metals are less effective due to their relatively large overpotential, premature lithiation termination, and limited volume expansions hindering movement toward the CC. The study aids the BL design, focusing on metal choice and optimization material and microstructural properties, such as the Li‐ion conductivity and interfacial resistance.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3