Synergistic Regulation of Polyselenide Dissolution and Na‐Ion Diffusion of Se‐Vacancy‐Rich Bismuth Selenide toward Ultrafast and Durable Sodium‐Ion Batteries

Author:

Lin Zeyu1,Zhang Wei1ORCID,Peng Jian23,Li Qinghua1,Liang Zhixin1,Wang Gaoyu1,Wang Junlin1,Wang Guang1,Huang Zhijiao1,Huang Shaoming14ORCID

Affiliation:

1. School of Materials and Energy, Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage Devices Guangdong University of Technology Guangzhou 510006 China

2. Department of Mechanical and Materials Engineering Western University London ON N6A 5B9 Canada

3. Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus Squires Way North Wollongong NSW 2522 Australia

4. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China

Abstract

AbstractMetal selenides (MSes) have great potential as candidate anode materials in high‐specific‐energy sodium‐ion batteries (SIBs) but are plagued by rapid capacity degradation and slow kinetics. Here, it is reveal that the Bi2Se3 anode discharge process involves multiple‐types of sodium polyselenides (Na‐pSex) which suffer from terrible dissolution and shuttling properties. Based on these observations, a nanoflower‐like composite of dual carbon‐confined Bi2Se3−x crystallites is designed via facile defect chemistry. The robust dual N‐doped carbon layer suppresses the precipitation and aggregation of Bi2Se3, significantly alleviating the dissolution and shuttle effect of Na‐pSex. Theoretical calculations indicate that the pyridine/pyrrole nitrogen sites exhibit strong van der Waals resistance and chemisorption properties against Na2Se4 and Na2Se2. Furthermore, the abundant Se vacancies improve the inherent conductivity of Bi2Se3, reduce the diffusion barrier of Na+, and accelerate the reaction kinetics. Consequently, the resulting Bi2Se3−x@DNC electrode exhibits extraordinary durability (over 2000 cycles at 10.0 A g−1) and high‐rate capability (354.4 mAh g−1 at 75.0 A g−1), propelling the battery performance to new heights. Encouragingly, the assembled hybrid capacitor displays competitive rate performance and an ultra‐long lifespan exceeding 40 000 cycles, making the Bi2Se3−x@DNC electrode a promising candidate for SIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3