Activation and Stabilization of Mn‐Based Positive Electrode Materials by Doping Nonmetallic Elements

Author:

Mahara Yuji1ORCID,Oka Hideaki1ORCID,Nonaka Takamasa1ORCID,Kosaka Satoru1,Takahashi Naoko Takechi1ORCID,Kondo Yasuhito1,Makimura Yoshinari1ORCID

Affiliation:

1. Toyota Central R&D Labs., Inc. Nagakute Aichi 480‐1118 Japan

Abstract

AbstractDisordered rock‐salt (DRS) type active materials are highly significant because of their large reversible capacities, which are due to their unique Li+ diffusion pathway and the redox capabilities of cationic transition metals (TMs) and anionic O ions. Loosely crystalline DRS materials have weak covalent bonds between TMs and O, increasing the O redox contribution and thereby enhancing their capacities. In this study, Mn‐based positive electrode materials with DRS structures are activated and stabilized by mechanochemical doping of nonmetallic elements P and B into interstitial sites. Synthesized Li0.90Mn0.84P0.04O2 (LMPO5) exhibits an initial discharge capacity of 346 mAh g−1 (1050 Wh kg−1) during charging/discharging. Li0.91Mn0.83B0.10O2 (LMBO5) has a moderately expanded lattice size, which facilitates high‐capacity retention during cycling (≈284 mAh g−1 at the 30th cycle). The structural properties of the synthesized active materials are extensively characterized. By introducing nonmetallic elements into the interstitial sites of Mn‐based materials, inexpensive, high‐capacity, and long‐cycling/calendar‐life Co/Ni‐free monometallic positive electrode materials may be further developed.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3