S‐Scheme Co9S8@Cd0.8Zn0.2S‐DETA Hierarchical Nanocages Bearing Organic CO2 Activators for Photocatalytic Syngas Production

Author:

Su Bo1,Zheng Mei1,Lin Wei1,Lu Xue Feng1,Luan Deyan2,Wang Sibo1,Lou Xiong Wen (David)3ORCID

Affiliation:

1. State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China

2. School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore

3. Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue, Kowloon Hong Kong 999077 P. R. China

Abstract

AbstractDelicate modulations of CO2 activation and charge carrier separation/migration are challenging, yet imperative to augment CO2 photoreduction efficiency. Herein, by supporting diethylenetriamine (DETA)‐functionalized Cd0.8Zn0.2S nanowires on the exterior surface of hollow Co9S8 polyhedrons, hierarchical Co9S8@Cd0.8Zn0.2S‐DETA nanocages are fabricated as an S‐scheme photocatalyst for reducing CO2 and protons to produce syngas (CO and H2). The amine groups strengthen adsorption and activation of CO2, while the “nanowire‐on‐nanocage” hierarchical hollow heterostructure with an S‐scheme interface boosts separation and transfer of photoinduced charges. Employing Co(bpy)32+ as a cocatalyst, the optimal photocatalyst effectively produces CO and H2 in rates of 70.6 and 18.6 µmol h−1 (i.e., 4673 and 1240 µmol g−1 h−1), respectively, affording an apparent quantum efficiency of 9.45% at 420 nm, which is the highest value under comparable conditions. Ultraviolet photoelectron spectroscopy, Kelvin probe, and electron spin resonance confirm the S‐schematic charge‐transfer process in the photocatalyst. The key COOH* species responsible for CO2‐to‐CO reduction is detected by in‐situ diffuse reflectance infrared Fourier transform spectroscopy and endorsed by density functional theory calculations, and thus a possible CO2 reduction mechanism is proposed.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3