Functionalized Electrode Additive for Simultaneously Reinforcing Chemo‐Mechanical Properties of Millimeter‐Thick Dry‐Electrode for High‐Energy All‐Solid‐State Batteries

Author:

Kim Hyun‐seung1ORCID,Jung Jae Yup12,Kim KyungSu1,Hwang Chihyun1,Yu Jisang1,Park Min‐Sik2,Cho Woosuk1ORCID

Affiliation:

1. Advanced Batteries Research Center Korea Electronics Technology Institute 25, Saenari‐ro Seongnam 13509 Republic of Korea

2. Department of Advanced Materials Engineering for Information and Electronics Integrated Education Institute for Frontier Science & Technology (BK21 Four) Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin 17104 Republic of Korea

Abstract

AbstractVoids are widely disseminated in a powder when mixed, and hence the typical dry‐electrode preparation method yields a sparse dry‐electrode because the external pressure applied to the surface of the mixed powder is not evenly distributed. Consequently, particle cracking and void remnants appear in the electrode after calendaring. This study introduces a practically applicable bi‐functionalized electrode additive to simultaneously reinforce the chemo‐mechanical properties of millimeter‐thick dry electrodes. The agyrodite Li6PS5Cl solid electrolyte and lithium difluorophosphate (LiPO2F2) additive have different sizes, as demonstrated by their densification from their elaborate bimodal structure, which is densely packed. Because the additive is filled into the interparticle voids in the electrode sheet during electrode fabrication, a decrease in electrode cracking after calendaring is possible because of the uniform distribution of external pressure. Hence, a thin, highly ionic/electronic‐conductive electrode can be constructed by the addition of LiPO2F2 additive. Furthermore, during the formation, the active material surface‐contacted LiPO2F2 promptly produces a surface layer comprising LiF and LixPFy. Thus, the addition of LiPO2F2 further reduces the degradation of Li6PS5Cl solid electrolytes. As a result, the LiPO2F2 additive simultaneously improves the electrochemical and physicochemical properties of millimeter‐thick dry‐electrodes for high‐energy all‐solid‐state battery systems.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3