Deciphering the Role of Native Defects in Dopant‐Mediated Defect Engineering of Carbon Electrocatalysts

Author:

Li Ning1,Li Mengyang23,Guo Kun1ORCID,Guo Ziqian1,Wang Ruijie4,Bao Lipiao1ORCID,Hou Gao‐Lei3ORCID,Lu Xing15ORCID

Affiliation:

1. State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

2. School of Physics Xidian University Xi'an 710071 China

3. MOE Key Laboratory for Non‐Equilibrium Synthesis and Modulation of Condensed Matter School of Physics Xi'an Jiaotong University Xi'an 710049 China

4. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China

5. School of Chemistry and Chemical Engineering Hainan University Haikou 570228 China

Abstract

AbstractDoping–dedoping chemistry lays the cornerstone for converting heteroatom dopants into intrinsic defects as the emerging active sites of carbon catalysts, but the defect content is yet hindered by inadequate doping efficiencies. Comprehending crucial factors behind the doping of pristine carbon and their correlation to the catalytic properties of dedoped carbon is thus of high significance. Here, the overlooked impact of native defects in pristine carbon on dopant‐mediated defect engineering of carbon catalysts is explicitly unveiled. Intact fullerene (C60), C60‐derived carbon, and carbon black in distinct pentagon/edge defect states are employed as respective precursors to undergo a nitrogen doping–dedoping treatment. Theoretical and experimental evidence consistently indicates that native pentagons change the preferred N doping site from the edge to the basal plane, leading to a substantially higher doping level. Importantly, in addition to pentagons from the removal of zigzag‐edged pyridinic N, N dopants in in‐plane pentagons are more easily dedoped than those in hexagons, generating even more pentagons in a new pentagon–heptagon–pentagon structure as oxygen reduction active sites. The optimized defect‐rich carbon gives an outstanding half‐wave potential of 0.834 V (0.846 V for Pt/C) via the four‐electron pathway, excellent long‐term durability, and prospective applicability in zinc–air batteries.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3