Enhancing Oxygen Evolution Reaction by Simultaneously Triggering Metal and Lattice Oxygen Redox Pair in Iridium Loading on Ni‐Doped Co3O4

Author:

Wang Ansheng12,Wang Wanying12,Xu Jinchao12,Zhu Ao12,Zhao Chunning12,Yu Meng12,Shi Guoliang3,Yan Jiaguo4,Sun Shuhui5,Wang Weichao123ORCID

Affiliation:

1. Shenzhen Research Institute of Nankai University Shenzhen 518083 China

2. College of Electronic Information and Optical Engineering Nankai University Tianjin 300071 China

3. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control College of Environmental Science and Engineering Nankai University Tianjin 300350 China

4. Division of Oilfield Chemicals China Oilfield Services Limited Tianjin 300450 China

5. Institut National de la Recherche Scientifique‐Énergie Matériaux et Télécommunications Varennes Quebec J3X1S2 Canada

Abstract

AbstractSince the active sites in catalytic systems are either metal sites or lattice oxygen, simultaneously triggering metal and lattice oxygen redox pair with low energy barriers is expected to provide diversified and efficient sites to accelerate oxygen evolution reaction (OER) kinetics, but this is a great challenge. Herein, Ir species (Ir clusters and Ir single atoms) loaded on Ni‐doped Co3O4 is designed (Ir/Ni‐Co3O4), where metallic Ir clusters downsize to spread into high‐density Ir single atoms to load on reconstruction‐derived Ni‐doped CoOOH. In situ spectroscopy, isotope‐labeled, and chemical probe experiments demonstrate that metal site and lattice oxygen are simultaneously activated to participate in the OER. Further theoretical studies demonstrate that the Co site is the most favorable site to promote the OER through an adsorbate evolution mechanism with a low energy barrier of 1.69 eV. The Ni cooperating with Ir atoms synergistically upshifts energy positions of the O p band centers. Thus, the lattice O that bridges Ni and Ir atoms is activated to participate in the OER via coupling with adsorbed O on the Ir site to fulfill O─O bond formation. Benefiting from the conjoint participation of the metal and lattice oxygen redox pair, Ir/Ni‐Co3O4 affords extremely low OER overpotentials of 177 and 263 mV at corresponding 10 and 500 mA cm−2.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3