Suppressing Trap‐Assisted Nonradiative Recombination via Interface Modification for Achieving Efficient Organic Solar Cells

Author:

Ge Zhongwei1,Qiao Jiawei2,Song Jiali1,Li Xiaoming1,Fu Jiawei1,Fu Zhen2,Gao Jiaxin3,Tang Xian4,Jiang Lang5,Tang Zheng3,Lu Guanghao4,Hao Xiaotao2,Sun Yanming1ORCID

Affiliation:

1. School of Chemistry Beihang University Beijing 100191 P. R. China

2. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low‐dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

4. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710054 P. R. China

5. Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

Abstract

AbstractTrap states in organic solar cells (OSCs) can capture free charges, leading to a reduction in current density and significant energy loss. Since charge collection is primarily dependent on the interface layer, minimizing trap states at interfaces can effectively suppress energy losses, a topic that has been rarely explored. Herein, an interface strategy is proposed by combining Me‐4PACz and PEDOT:PSS to mitigate the trap‐assisted nonradiative recombination at the hole transport layer (HTL). OSCs based on the Me‐4PACz/PEDOT:PSS exhibit reduced trap densities and low energy losses compared to devices fabricated with a single‐layer HTL. This reduction can be attributed to a lower nonradiative recombination rate during hole transport at the interface. Changes in the work function of the two interlayers due to contact result in the existence of a built‐in potential inside the composite interlayer, promoting charge collection and reducing energy loss from charge recombination. Furthermore, the composite HTL interface induces vertical phase separation of active layer, leading to significant improvements of the fill factor for OSCs. As a result, high power conversion efficiencies (PCEs) of 18.70% and 19.02% are achieved for binary all‐polymer solar cells and polymer donor/small molecule acceptor solar cells, respectively.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3