Phase Transitions and Ion Transport in Lithium Iron Phosphate by Atomic‐Scale Analysis to Elucidate Insertion and Extraction Processes in Li‐Ion Batteries

Author:

Šimić Nikola1,Jodlbauer Anna2,Oberaigner Michael1,Nachtnebel Manfred1,Mitsche Stefan13ORCID,Wilkening H. Martin R.24,Kothleitner Gerald13,Grogger Werner13,Knez Daniel3ORCID,Hanzu Ilie24

Affiliation:

1. Graz Centre for Electron Microscopy Steyrergasse 17 8010 Graz Austria

2. Institute of Chemistry and Technology of Materials Graz University of Technology Stremayrgasse 9 8010 Graz Austria

3. Institute of Electron Microscopy and Nanoanalysis Graz University of Technology Steyrergasse 17 8010 Graz Austria

4. Alistore – ERI European Research Institute, CNRS FR3104 Hub de l'Energie Rue Baudelocque F‐80039 Amiens France

Abstract

AbstractLithium iron phosphate (LiFePO4, LFP) serves as a crucial active material in Li‐ion batteries due to its excellent cycle life, safety, eco‐friendliness, and high‐rate performance. Nonetheless, debates persist regarding the atomic‐level mechanisms underlying the electrochemical lithium insertion/extraction process and associated phase transitions. A profound clarity on the fundamental lithium storage mechanisms within LFP is achieved through meticulous scanning transmission electron microscopy (STEM) and selected area electron diffraction (SAED) imaging. This study shows systematical tracking of lithium ions within their respective channels and unveils the phase distribution within individual LFP crystallites not only quantitatively but also at unprecedented atomic‐level resolution. Incontrovertible evidence of the co‐existence of segregated yet only partially lithiated LixFePO4 regions in electrochemically delithiated LFP crystals are provided using correlative electron microscopic methods and data analysis. Remarkably, by directly tracing ion transport within lithium channels a diffusion coefficient range (10−13–10−15 cm2s−1) for correlated lithium ion motion in LFP is estimated and Funke's ion transport jump relaxation model is validated experimentally for the first time. These findings significantly advance the understanding of olivine‐type materials, offering invaluable insights for designing superior battery materials.

Funder

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3