Multiplying Light Harvest Driven by Hybrid‐Reflections 3D Electrodes Achieves High‐Availability Photo‐Charging Zinc‐Ion Batteries

Author:

Zhang Minggang1,Pan Longkai1,Jin Zhipeng1,Wang Xiao1,Mei Hui1ORCID,Cheng Laifei1,Zhang Litong1

Affiliation:

1. Science and technology on Thermostructural Composite Materials Laboratory School of Materials Science and Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

Abstract

AbstractIndependent photo‐charging technologies based on aqueous zinc‐ion batteries (ZIBs) are promising candidates for next‐generation renewable energy systems. The conflict between light utilization and electrochemical performance in the planar electrode severely limits the availability of photo‐charging ZIBs. Herein, 3D light‐trapping structures (LTSs) are proposed and applied in a rigid VO2/C@SiCuOC electrode. A hybrid‐reflection effect driven by LTSs is employed to improve light‐harvesting efficiency. The suitable energy levels of VO2 and C ensure charge transport, while the rigid SiCuOC support meets the stability requirements. Such a 3D VO2/C@SiCuOC electrode exhibits a multiplying photo‐response current density of 42.2 µA cm−2 (≈400% of the plate) and delivers a higher energy density (0.19 mWh cm−2 at 0.51 mW cm−2). More importantly, in a realistic environment (dark for 16 h and light for 8 h), the photo‐charging ZIBs integrated into a roof exhibit an exciting open circuit voltage of 3.176 V (three in series) and supply electricity continuously. The high strength (over 9 MPa) of the photo‐charging ZIBs inherited from the 3D rigid electrode further enables its practical application. The enhanced performance of the photo‐charging ZIBs obtained from structural optimization provides unique inspiration for next‐generation clean energy harvest/storage systems.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3