Control of the Crystallization and Phase Separation Kinetics in Sequential Blade‐Coated Organic Solar Cells by Optimizing the Upper Layer Processing Solvent

Author:

Wang Yilin1,Xue Jingwei1,Zhong Huaying2,Everett Christopher R.2,Jiang Xinyu2,Reus Manuel A.2,Chumakov Andrei3,Roth Stephan V.34,Adedeji Michael A.5,Jili Ncedo5,Zhou Ke1,Lu Guanghao6,Tang Zheng7,Mola Genene Tessema5,Müller‐Buschbaum Peter28,Ma Wei1ORCID

Affiliation:

1. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

2. Technische Universität München Physik‐Department Lehrstuhl für Funktionelle Materialien James‐Franck‐Str. 1 85748 Garching Germany

3. Deutsches Elektronen‐Synchrotron (DESY) 22607 Hamburg Germany

4. KTH Royal Institute of Technology Department of Fibre and Polymer Technology Teknikringen 56–58 SE‐100 44 Stockholm Sweden

5. School of Chemistry & Physics University of KwaZulu‐Natal Pietermaritzburg Campus, Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa

6. Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 China

7. Center for Advanced Low‐dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China

8. Technische Universität München Heinz Maier‐Leibnitz Zentrum (MLZ) Lichtenbergstraße 1 85748 Garching Germany

Abstract

AbstractSequential deposition of the active layer in organic solar cells (OSCs) is favorable to circumvent the existing drawbacks associated with controlling the microstructure in bulk‐heterojunction (BHJ) device fabrication. However, how the processing solvents impact on the morphology during sequential deposition processes is still poorly understood. Herein, high‐efficiency OSCs are fabricated by a sequential blade coating (SBC) through optimization of the morphology evolution process induced by processing solvents. It is demonstrated that the device performance is highly dependent on the processing solvent of the upper layer. In situ morphology characterizations reveal that an obvious liquid–solid phase separation can be identified during the chlorobenzene processing of the D18 layer, corresponding to larger phase separation. During chloroform (CF) processing of the D18 layer, a proper aggregation rate of Y6 and favorable intermixing of lower and upper layers results in the enhanced crystallinity of the acceptor. This facilitates efficient exciton dissociation and charge transport with an inhibited charge recombination in the D18/CF‐based devices, contributing to a superior performance of 17.23%. These results highlight the importance of the processing solvent for the upper layer in the SBC strategy and suggest the great potential of achieving optimized morphology and high‐efficiency OSCs using the SBC strategy.

Funder

National Key Research and Development Program of China

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3