Role of Scaffold Architecture and Excess Surface Polymer Layers in a 3D‐Interconnected Ceramic/Polymer Composite Electrolyte

Author:

Sahore Ritu1ORCID,Armstrong Beth L.2ORCID,Tang Xiaomin1ORCID,Liu Changhao1ORCID,Owensby Kyra3,Kalnaus Sergiy4ORCID,Chen Xi Chelsea1ORCID

Affiliation:

1. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

2. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

3. The Bredesen Center for Interdisciplinary Research and Graduate Education The University of Tennessee Knoxville Knoxville TN 37996 USA

4. Computational Science and Engineering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

Abstract

Abstract3D‐interconnected ceramic/polymer composite electrolytes offer promise to combine the benefits of both ceramic and polymer electrolytes. However, an in‐depth understanding of the role of the ceramic scaffold's architecture, and the associated polymer/ceramic interfaces on the electrochemical properties of such composite electrolytes is still incomplete. Here, these factors are systematically evaluated using an interconnected composite electrolyte with a tunable and well‐defined architecture. The ionic conductivity of the ceramic scaffold is strongly dependent on its porosity and tortuosity, as demonstrated experimentally and via theoretical modeling. The connectivity of the ceramic framework avoids the high interfacial impedance at the polymer/ceramic electrolyte interface within the composite. However, this work discovers that the interfacial impedance between the bulk composite and excess surface polymer layers of the composite membrane dominates the overall impedance, resulting in a 1–2 order drop of ionic conductivity compared to the ceramic scaffold. Despite the high impedance interfaces, an improved Li+ transference number is found compared to the neat polymer (0.29 vs 0.05), attributed to the ceramic phase's contributions toward ion transport. This leads to flatter overpotentials in lithium symmetric cell cycling. These results are expected to guide future research directions toward scalable manufacturing of composite electrolytes with optimized architecture and interfaces.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3