Ion Bridging by Carbon Dioxide Facilitates Electrochemical Energy Storage at Charged Carbon–Ionic–Liquid Interfaces

Author:

Liu Mingren12,Wang Yong‐Lei3,Schutjajew Konstantin2,Chai Liyuan1,Oschatz Martin2ORCID

Affiliation:

1. Institute of Environmental Science and Engineering, School of Metallurgy and Environment Central South University Changsha 410083 P. R. China

2. Institute for Technical Chemistry and Environmental Chemistry Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich‐Schiller‐University Jena Philosophenweg 7a 07743 Jena Germany

3. Department of Materials and Environmental Chemistry Arrhenius Laboratory Stockholm University Stockholm SE‐106 91 Sweden

Abstract

AbstractSolvent free ionic liquid (IL) electrolytes facilitate high‐voltage supercapacitors with enhanced energy density, but their complex ion arrangement and through that the electrochemical properties, are limited by strong Coulombic ordering in the bulk state and like‐charged ion repulsion at electrified interfaces. Herein, a unique interfacial phenomenon resulting from the presence of carbon dioxide loaded in 1‐Ethyl‐3‐methylimidazoliumtetrafluorborate electrolyte that simultaneously couples to IL ions and nitrogen‐doped carbonaceous electrode is reported. The adsorbed CO2 molecule polarizes and mitigates the electrostatic repulsion among like‐charged ions near the electrified interface, leading to an ion “bridge effect” with increased interfacial ionic density and significantly enhanced charge storage capability. The unpolarized CO2 possessing a large quadrupole moment further reduces ion coupling, resulting in higher conductivity of the bulk IL and improved rate capability of the supercapacitor. This work demonstrates polarization‐controlled like‐charge attraction at IL–electrode–gas three‐phase boundaries, providing insights into manipulating complex interfacial ion ordering with small polar molecule mediators.

Funder

China Scholarship Council

Vetenskapsrådet

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3