Pressure Effects and Countermeasures in Solid‐State Batteries: A Comprehensive Review

Author:

Xu Hongfei1,Yang Shubin1,Li Bin1ORCID

Affiliation:

1. School of Materials Science & Engineering Beihang University Beijing 100191 China

Abstract

AbstractSolid‐state batteries (SSBs) have garnered significant attention as promising and safe electrochemical solutions for high‐energy storage. Despite their advantageous characteristics, the widespread adoption of SSBs encounters significant obstacles. Foremost among these challenges is the inadequate solid‐state electrolyte (SSE)‐electrode contact, particularly under typical operating conditions with moderate pressures. Consequently, substantial external pressures are conventionally applied to establish a tightly bonded and low‐impedance interfacial connection. Unfortunately, high pressure concurrently precipitates detrimental effects, such as SSE structural fractures and premature short circuits. Moreover, the pressure parameters that are currently employed in laboratory‐scale research lack consistency and far exceed the current industrial requirement (< 1 MPa), which undermines the objective evaluation of SSBs’ actual performance and hampers the practical utilization. This review aims to construct a comprehensive perspective on the effect of pressure on SSBs, with a specific focus on decoupling the interfacial/bulk electrochemo‐mechanical dynamics. In particular, the adverse consequences and fundamental causes of the highly‐pressure‐reliance behavior in SSBs are scrutinized, followed by a systematic summarization of the current strategies toward low‐pressure SSBs. Based on these insights, it is put forth promising directions for better disentangling the electrochemo‐mechanical interplay within SSBs and inspiring the development of pressure‐independent SSBs.

Funder

Academic Excellence Foundation of BUAA for PHD Students

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3