Deciphering the Degradation Mechanism of High‐Rate and High‐Energy‐Density Lithium–Sulfur Pouch Cells

Author:

Cheng Qian12,Chen Zi‐Xian12,Li Xi‐Yao3,Bi Chen‐Xi12,Sun Furong34,Zhang Xue‐Qiang12,Ma Xinzhi5,Li Bo‐Quan12,Huang Jia‐Qi12ORCID

Affiliation:

1. School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

2. Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China

3. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China

4. Shanxi Research Institute for Clean Energy Tsinghua University Taiyuan 030032 China

5. Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 China

Abstract

AbstractLithium–sulfur (Li–S) batteries are widely regarded as promising next‐generation battery systems due to their impressive theoretical energy density of 2600 Wh kg−1. However, practical high‐energy‐density Li–S pouch cells suffer from rapid performance degradation under high working rates. Herein, the performance degradation mechanism of 400 Wh kg−1 Li–S pouch cells is systematically investigated under a high cycling rate of 0.2 C. Focusing on the reduced specific capacity and increased cell polarization, the sluggish cathodic sulfur redox kinetics under lean‐electrolyte and high‐rate conditions is identified as the main limitation. Further polarization decoupling indicates the cathodic activation polarization contributes dominantly to the increased cell polarization. Accordingly, a delicately designed electrolyte using dimethyl diselenide as the kinetic promoter is proposed to enable the Li–S pouch cells to work at 0.2 C with reduced cell polarization. This work clarifies the sluggish cathodic interfacial charge transfer kinetics as the main challenge for high‐energy‐density Li–S batteries at high rates and is expected to inspire rational strategy design for achieving advanced Li–S batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3