Designing Bidirectionally Functional Polymer Electrolytes for Stable Solid Lithium Metal Batteries

Author:

Ma Qiang1,Fu Sha23,Wu An‐Jun23,Deng Qi4,Li Wei‐Dong1,Yue Dan1,Zhang Bing1,Wu Xiong‐Wei23ORCID,Wang Zhen‐Ling1,Guo Yu‐Guo56

Affiliation:

1. College of Materials Engineering Henan International Joint Laboratory of Rare Earth Composite Materials Henan University of Engineering Zhengzhou Henan 451191 P. R. China

2. School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410125 P. R. China

3. Hunan Province Yin Feng New Energy Co. Ltd Changsha Hunan 410019 P. R. China

4. State Key Laboratory of Utilization of Woody Oil Resource of China Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function Hunan Academy of Forestry Changsha Hunan 410018 P. R. China

5. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China

6. University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China

Abstract

AbstractThe development of high energy density lithium metal batteries has been retarded by the uncontrolled lithium dendrite formation and unstable Ni‐rich cathode–electrolyte interface (CEI). Herein, the bidirectionally functional polymer electrolytes (BDFPE) are designed via direct UV solidification of functional polymer species on electrode surfaces to simultaneously handle the interface issues faced by anodes and cathodes. By constructing the BDFPE, a smooth and dendrite‐free lithium deposition is enabled for Li||Li symmetry cells after 1800 h ultralong cycling at 1 mA cm−2 and 1 mAh cm−2, which are attributed to the fast ion conductivity (5.84 × 10−4 S cm−1), high Li+ transfer number (0.69) of BDFPE and low interfacial resistance between electrode and solid electrolytes. Furthermore, Li||LiNi0.6Co0.2Mn0.2O2 batteries demonstrate a favorable cycling and rate capability, and a stable and phosphate‐based CEI layer is constructed in situ. DFT studies reveal that the functional additives FEC and TEP participate in the interface formation. The finding provides a promising design strategy to accommodate the anode and cathode interfaces for high energy density lithium metal batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3