Freezing Halide Segregation Under Intense Light for Photostable Perovskite/Silicon Tandem Solar Cells

Author:

Qiao Liang1,Ye Tianshi1,Wang Tao1,Kong Weiyu1,Sun Ruitian1,Zhang Lin1,Wang Pengshuai1,Ge Zhizhong1,Peng Yong2,Zhang Xiaodan3,Xu Menglei4,Yan Xunlei4,Yang Jie4,Zhang Xinyu4,Zeng Fang15,Han Liyuan1,Yang Xudong167ORCID

Affiliation:

1. State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China

2. State Key Lab of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China

3. Institute of Photoelectronic Thin Film Devices and Technology of Nankai University Tianjin 300071 China

4. Zhejiang Jinko Solar Co., Ltd. Zhejiang Province 314416 China

5. School of Physics Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia

6. Center of Hydrogen Science School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China

7. Innovation Center for Future Materials Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University Shanghai 201210 China

Abstract

AbstractPhoto‐induced halide segregation in wide‐bandgap (WBG) perovskite leads to poor stability and limits its application in high‐efficiency tandem solar cells. Here, a simple solution strategy to achieve photostable WBG perovskite solar cells (PSCs) with bandgap of ≈1.67 eV by ionic coupling potassium sorbate with defects at the buried perovskite interface is reported. Moreover, the ionic coupled potassium sorbate (ICPS) enables to control the formation of N‐methyl formamidinium ions that can selectively passivate the perovskite defects at grain boundaries. As a result, the photo‐induced halide segregation in the target perovskite films is frozen under intense light. The target single‐junction WBG PSC achieves a record efficiency of 22.00% with an open‐circuit voltage (VOC) of 1.272 V and photostability of less than 2% decay over 2000 h of operation. Perovskite/Silicon tandem solar cells are also fabricated that achieve an efficiency of 30.72% (certified 30.09% @1.087 cm2), which is the highest efficiency reported to date with a tunneling oxide passivating contact (TOPCon) c‐Si substrate. The encapsulated tandem device can maintain 97% of its initial efficiency after 1000 h of operation.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3