Affiliation:
1. Key Laboratory for Thin Film and Microfabrication of Ministry of Education Department of Micro/Nano Electronics School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University 800 Dongchuan RD, Minhang Shanghai 200240 China
Abstract
AbstractAqueous aluminum ion batteries (AAIBs) have drawn considerable attention due to their intrinsic safety, cost‐effectiveness, eco‐friendliness, and high theoretical capacity of aluminum. Currently, suitable anode materials are crucial for the development of high‐performance AAIBs. For the first time, a hydrophilic (ZnCr2O4) and hydrophobic (PVDF) layer modified zinc anode paired with an aluminum‐based aqueous electrolyte to construct a high‐performance aluminum–zinc hybrid ion battery. The Hydrophilic ZnCr2O4 layer of anode endows the battery with low polarization by boosting the pre‐desolvation and deposition kinetics of aluminum/zinc ions. Meanwhile, the hydrophobic PVDF layer suppresses water‐induced corrosion of the anode. The synergistic effect of the hydrophilic and hydrophobic layers of the anode stimulates the battery to exhibit unprecedented cycle life (> 6000 cycles) and considerable discharge capacity (280 mAh g−1), compared to the batteries proposed in previous works paired with aluminum alloy anodes and aluminum‐based aqueous electrolytes. This novel anode provides powerful backing for the development of long‐life and high‐capacity aqueous polyvalent ion batteries due to its low cost and simple fabrication process.
Funder
National Natural Science Foundation of China
Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献