Grain Boundary Phases in NbFeSb Half‐Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials

Author:

Bueno Villoro Ruben1ORCID,Zavanelli Duncan2ORCID,Jung Chanwon1ORCID,Mattlat Dominique Alexander1,Hatami Naderloo Raana3,Pérez Nicolás3,Nielsch Kornelius3ORCID,Snyder Gerald Jeffrey2ORCID,Scheu Christina1ORCID,He Ran3ORCID,Zhang Siyuan1ORCID

Affiliation:

1. Nanoanalytics and Interfaces Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Straße 1 40237 Düsseldorf Germany

2. Materials Science & Engineering Northwestern University Clark Street 633 Evanston IL 60208 USA

3. Thermoelectric Materials and Devices IFW Dresden Helmholtzstraße 20 01069 Dresden Germany

Abstract

AbstractMany thermoelectric materials benefit from complex microstructures. Grain boundaries (GBs) in nanocrystalline thermoelectrics cause desirable reduction in the thermal conductivity by scattering phonons, but often lead to unwanted loss in the electrical conductivity by scattering charge carriers. Therefore, modifying GBs to suppress their electrical resistivity plays a pivotal role in the enhancement of thermoelectric performance, zT. In this work, different characteristics of GB phases in Ti‐doped NbFeSb half‐Heusler compounds are revealed using a combination of scanning transmission electron microscopy and atom probe tomography. The GB phases adopt a hexagonal close‐packed lattice, which is structurally distinct from the half‐Heusler grains. Enrichment of Fe is found at GBs in Nb0.95Ti0.05FeSb, but accumulation of Ti dopants at GBs in Nb0.80Ti0.20FeSb, correlating to the bad and good electrical conductivity of the respective GBs. Such resistive to conductive GB phase transition opens up new design space to decouple the intertwined electronic and phononic transport in thermoelectric materials.

Funder

Office of Energy Efficiency and Renewable Energy

National Research Foundation of Korea

National Institute of Standards and Technology

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3