Eco‐Friendly Tetrahydropyran Enables Weakly Solvating “4S” Electrolytes for Lithium‐Metal Batteries

Author:

Liao Yaqi1,Zhou Mengyuan1,Yuan Lixia1,Huang Kai1,Wang Donghai2,Han Yan1,Meng Jintao3,Zhang Yun1,Li Zhen1,Huang Yunhui1ORCID

Affiliation:

1. State Key Laboratory of Material Processing and Die and Mold Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

2. Institute of New Energy for Vehicles Shanghai Key Laboratory of Development & Application for Metallic Functional Materials School of Materials Science and Engineering Tongji University Shanghai 201804 China

3. Wuhan National Laboratory for Optoelectronics (WNLO) Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractThe growth of lithium dendrites hinders the commercial applications of lithium‐metal batteries. Electrolytes play a crucial role in influencing electrode/electrolyte interfacial chemistry. Traditional electrolytes adopt strongly solvating solvents to dissolve Li salts, creating an organic‐rich solid electrolyte interface (SEI). The Li+ conductivity and mechanical strength of the organic‐rich SEI are poor, so the derived SEI cannot effectively suppress the growth of Li dendrites. The weakly solvating electrolyte (WSE) system can realize an inorganic‐rich SEI, demonstrating improved compatibility with the Li metal. However, the design rules for the WSE are not clear. Here, four kinds of “4S” (single salt and single solvent) WSE are designed to investigate interface chemistry. The SEI thickness, pore volume, and porosity are revealed via a reactive force field. The results show the heterocyclic and symmetric tetrahydropyran has the most suitable solvating power and the best interfacial stability in the lithium‐metal battery system. This research provides a weakly solvating electrolyte design route for bridging the molecular thermodynamic and interfacial chemistry gap.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3