Affiliation:
1. School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
2. Yibin Research Institute Southwest Jiaotong University Yibin 64000 P. R. China
3. School of Mechanical Engineering Guizhou University Guiyang Guizhou 550025 P. R. China
Abstract
AbstractIn the age of the artificial intelligence of things (AIoT), wearable devices have been extensively developed for smart healthcare. This paper proposes a self‐powered and self‐sensing lower‐limb system (SS‐LS) with negative energy harvesting and motion capture for smart healthcare. The SS‐LS achieves self‐sustainability via a half‐wave electromagnetic generator (HW‐EMG) that recovers negative work from walking with a low cost of harvesting. Additionally, the motion capture function of the system is achieved by the three‐channel triboelectric nanogenerator (TC‐TENG) based on binary code, which can accurately detect the angle and direction of the knee joint rotation. The bench test experiment indicates that the HW‐EMG has an average output power of 11.2 mW, sufficient to power a wireless sensor. The three‐channel voltage signal of TC‐TENG fits well with the binary signal, which can precisely detect the angle and direction of rotation. Furthermore, the SS‐LS demonstrates an identification accuracy of 99.68% and a motion detection accuracy of 99.96% based on an LSTM deep learning model. Demonstrations of Parkinson's disease and fall detection and monitoring of three training modes (sit‐and‐stand, balance, and walking training) are also performed, which exhibit outstanding sensing capabilities. The SS‐LS is highly promising in sports rehabilitation medicine and can contribute to the development of smart healthcare.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献