Nanocrystal‐Enabled Perovskite Heterojunctions in Photovoltaic Applications and Beyond

Author:

Wieliczka Brian M.1ORCID,Habisreutinger Severin N.1ORCID,Schutt Kelly1ORCID,Blackburn Jeffrey L.1ORCID,Luther Joseph M.12ORCID

Affiliation:

1. National Renewable Energy Laboratory Center for Hybrid Organic Inorganic Semiconductors for Energy 15013 Denver West Parkway Golden CO 80401 USA

2. Renewable and Sustainable Energy Research Institute (RASEI) University of Colorado Boulder CO 80309 USA

Abstract

AbstractHeterojunctions are used to tailor the properties of semiconductors in optoelectronic devices, yet for emerging devices composed of metal halide perovskites, fabricating perovskite/perovskite heterojunctions has proved challenging due to solvent incompatibilities and rapid homogenization due to ion migration. Recent studies have demonstrated various strategies for using perovskite nanocrystals as a component to fabricate perovskite/perovskite heterojunctions, either with a perovskite thin film or a second nanocrystal layer. Heterojunctions such as these can impart many advantages of both bulk and nanocrystalline perovskite morphologies. This perspective focuses on recent developments of solution‐processed perovskite heterojunctions for solar cells and novel optoelectronic devices, in particular, highlighting the demonstrated and potential advantages of nanocrystal‐enabled fabrication strategies. A central tenet of this perspective is that the synthesis and dispersion of perovskite nanocrystals in non‐polar organic solvents offers a key processing advantage over traditional perovskite precursor solutions in polar solvents since the former allows for layer‐by‐layer deposition without dissolving an underlying perovskite film or crystal. This processing advantage, coupled with nanocrystal size control and ligand chemistry, enables perovskite heterojunctions with highly tunable optical and electrical properties. Such heterojunctions may enable disruptive technological advances in broad classes of devices such as solar cells, photodetectors, sensors, and (in)coherent photon sources with tunable polarization.

Funder

National Renewable Energy Laboratory

U.S. Department of Energy

Basic Energy Sciences

Office of Science

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3