KxVPO4F (x∼0): A New High‐Voltage and Low‐Stain Cathode Material for Ultrastable Calcium Rechargeable Batteries

Author:

Li Renjie1ORCID,Lee Youngsu2,Lin Huijun1,Che Xiangli1,Pu Xiangjun1,Yi Yuyang1,Chen Feiyang1,Yu Jingya13,Chan Kang Cheung134,Park Kyu‐Young2,Xu Zheng‐Long134

Affiliation:

1. Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hong Kong 000 China

2. Graduate Institute of Ferrous & Energy Materials Technology Pohang University of Science and Technology (POSTECH) Pohang 37667 Republic of Korea

3. State Key Laboratory of Ultra‐precision Machining Technology The Hong Kong Polytechnic University Hong Kong 0000 China

4. Research Institute of Advanced Manufacturing The Hong Kong Polytechnic University Hong Kong 000000 China

Abstract

AbstractThe utilization of high‐voltage intercalation cathodes in calcium‐ion batteries (CIBs) is impeded by the substantial size and divalent character of Ca2+ ions, which result in pronounced volume alterations and sluggish ion mobility, consequently causing inferior reversibility and low energy/power densities. To tackle these issues, polyanionic K‐vacant KxVPO4F (x∼0, designated as K0VPF) is proposed as high‐voltage and ultra‐stable cathode material in CIBs. The K0VPF demonstrates a decent calcium storage capacity of 75 mAh g−1 at 10 mA g−1 and remarkable capacity retention of 84.2% over 1000 cycles. The average working voltage of the K0VPF is 3.85 V versus Ca2+/Ca, representing the highest value reported for CIB cathodes to date. The combined experimental and theoretical investigations revealed that the low volume changes and hopping diffusion barriers contribute to the extraordinary stability and high‐power capabilities, respectively, of K0VPF. The distribution of Ca ions into polyanionic frameworks with pronounced spatial separation effectively attenuates the Ca2+–Ca2+ repulsive force and thus augmenting the Ca migration kinetics. The high voltage of K0VPF is attributed to the inductive effect from the largely electronegative fluorine. In conjunction with a calcium metal anode and a compatible electrolyte, Ca metal full cells featured a record‐high energy density of ≈300 Wh kg−1.

Funder

Guangdong Provincial Department of Science and Technology

Shenzhen Municipal Science and Technology Innovation Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3