Periodic Adjacent Pd‐Fe Pair Sites for Enhanced Nitrate Electroreduction to Ammonia via Accelerating Proton Relay

Author:

Xie Meng1,Zhu Guihua1,Yang Haoyu1,Liu Bin2,Li Minghao1,Qi Chunhong1,Wang Lianjun1,Jiang Wan1,Qiu Pengpeng1,Luo Wei1ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 China

2. School of Materials Science and Engineering Shanghai University Shanghai 200444 China

Abstract

AbstractRecently, bimetallic nanoparticles (NPs) are promising for driving nitrate (NO3 ) reduction reaction (NO3RR) to produce ammonia (NH3) due to their multiple active sites and electron redistribution via strong metal–metal interaction. However, the quantitatively determining the atomic configuration of the active sites and revealing their respective roles in NO3RR process are still challenged. Herein, the configuration of atomically ordered PdFe3 L12 intermetallic NPs into mesoporous carbon nanofibers (O‐PdFe3‐mCNFs) is reported as an efficient NO3RR catalyst for NH3 synthesis. Compared to the face‐centered cubic one, the O‐PdFe3‐mCNFs demonstrate a high NO3 removal of 98.3% within 270 min with a large NH3 yield rate of 1014.2 µmol h−1 cm−2. The detailed in situ and theoretical analysis reveals that the high performance of O‐PdFe3‐mCNFs is attributed to the synergetic effect from the periodic adjacent Pd‐Fe pair sites at the ordered (110) facet via accelerating proton relay, where the Fe sites show preferable stabilization of nitrogen−oxygen (*NO) intermediates while Pd sites serve as proton reservoir for *NO hydrogenation. Moreover, the strong dd orbital hybridization tunes d‐band center of the alloy NPs and effectively modulates the adsorption energy of *NO3 and *NO. This synergetic electrocatalyst design offers a new avenue for developing highly efficient multifunctional NO3RR catalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3