Direct‐Ink‐Write 3D Printing of Programmable Micro‐Supercapacitors from MXene‐Regulating Conducting Polymer Inks

Author:

Li Le1,Meng Jian1,Bao Xuran1,Huang Yunpeng1,Yan Xiu‐Ping2,Qian Hai‐Long2,Zhang Chao3ORCID,Liu Tianxi13

Affiliation:

1. Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China

2. School of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

Abstract

Abstract3D printing is gaining prospects thanks to the ease of manufacturing energy storage devices with programmable geometry at the macro‐ and microscales. Herein, a direct ink writing 3D printing approach for preparing all‐printed flexible micro‐supercapacitors is demonstrated using rationally designed poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/MXene composite gels as inks without the tedious processes and toxic organic additives. Among the printable inks, the homogeneously distributed MXene nanosheets can boost the printability of PEDOT:PSS solution and also regulate the interconnected electronic structures of the PEDOT:PSS undergoing a micellar to linear structure transition. The resulting 3D printed micro‐supercapacitors and integrated devices can deliver exceptionally large areal capacitances, remarkable rate performance, and high cycling stability with thickness‐independent capacitances even under exceptional deformations and low temperatures. This study thus provides a simple yet environmental‐friendly approach for preparing the conducting‐polymer‐based inks for 3D printing of customized, multiscale, and integrated energy devices.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Jiangsu Province Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3